
Logical Volume Management 
Before we go to far - if your needs are very simple, and you have enough space on your primary 
drive, then skip down to the SAMBA section, otherwise read on. 

WARNING - everything in this section has the ability to completely and utterly destroy data - 
what you do with your data is your business - these steps, if not clearly understood, will result in 
unrecoverable data loss to the drives/devices/volumes being worked on - back up your drives 
before considering any of these steps 
 

The Linux Logical Volume Manager (LVM) is a mechanism for virtualizing disks. It can create 
“virtual” disk partitions out of one or more physical hard drives, allowing you to grow, shrink, or 
move those partitions from drive to drive as your needs change. It also allows you to create larger 
partitions than you could achieve with a single drive. 

Traditional uses of LVM have included databases and company file servers, but even home users 
may want large partitions for music or video collections, or for storing online backups. LVM and 
RAID 1 can also be convenient ways to gain redundancy without sacrificing flexibility. 

This article looks first at a basic file server, then explains some variations on that theme, including 
adding redundancy with RAID 1 and some things to consider when using LVM for desktop 
machines. 

LVM Basics 
To use LVM, you must understand several elements. 

First are the regular physical hard drives attached to the computer. The disk space on these devices 
is chopped up into partitions. Finally, a filesystem is written directly to a partition. 

By comparison, in LVM, Volume Groups (VGs) are split up into logical volumes (LVs), where the 
filesystems ultimately reside 

Each VG is made up of a pool of Physical Volumes (PVs). You can extend (or reduce) the size of a 
Volume Group by adding or removing as many PVs as you wish, provided there are enough PVs 
remaining to store the contents of all the allocated LVs. As long as there is available space in the 
VG, you can also grow and shrink the size of your LVs at will (although most filesystems don't like to 
shrink). 

An Example LVM Stack 

In the exercise below, we'll follow this design - it's here for teaching purposes only - in production 
this will work, but perhaps consider using xfs vs. ext4 for production, reasons there are in the 
advanced section 

Section Tool 
Mounts mount /var/share /var/media 
FileSystem mkfs ext4 xfs 
Logical Volume lv /share /media 
Volume Group vg /dev/fileserver 
RAID (if applicable) mdadm /dev/md0 
Partitions pv /dev/sdb1 /dev/sdc1 



Disks fdisk /dev/sdb /dev/sdc 

Basic LVM Setup 
A simple, practical example of LVM use is a traditional file server, which provides centralized 
backup, storage space for media files, and shared file space for several family members' 
computers. 

Flexibility is a key requirement; who knows what storage challenges next year's technology will 
bring? 

For example, suppose your requirements now are: 

20G  - Large media file storage 
20G  - Shared files 

Ultimately, these requirements may increase a great deal over the next year or two, but exactly 
how much and which partition will grow the most are still unknown. 

Disk Hardware 
Traditionally, a file server uses SCSI disks, but today SATA disks offer an attractive combination of 
speed and low cost. With USB3, it's even more so with external disks that are easy to attach (and 
easy to remove, which is not recommended if extending an LVM set to USB3) 

SATA drives are not named like ATA drives (hda, hdb), but like SCSI (sda, sdb). Once the system has 
booted with SATA support, it has three physical devices mounted - the boot disk, which is 
generally, but may not be /dev/sda, and the two attached disks which are not part of the boot 
partition or file system. 

For purposes of this discussion - the attached non-boot disks are; 

/dev/sdb  32.0 GB 
/dev/sdc  32.0 GB 

Next, partition these for use with LVM. You can do this with fdisk by specifying the “Linux LVM” 
partition type 8e. 

fdisk /dev/sdb 

Command (m for help); <-- d to delete existing partition 
 
Command (m for help): <-- n for new partition 
 
Command action 
   e   extended 
   p   primary partition (1-4) <-- p for primary 
Partition number (1-4): <-- 1 
First cylinder (1-10443, default 1): <-- <ENTER> to accept defaults  
Using default value 1 
Last cylinder or +size or +sizeM or +sizeK (1-10443, default 10443): <-- <ENTER> to accept defaults 
 
Command (m for help): <-- t for type 
Selected partition 1 
Hex code (type L to list codes): <-- 8e 
Changed system type of partition 1 to 8e (Linux LVM) 



 
Command (m for help): <-- w to write the partion back to disk 
The partition table has been altered! 
 
Calling ioctl() to re-read partition table. 
Syncing disks. 

Now we do the same for the other hard disk /dev/sdc: 

The finished product looks like this for my test drives: 

sudo fdisk -l /dev/sdc 
Disk /dev/sdc: 29.8 GiB, 32008830976 bytes, 62517248 sectors 
Units: sectors of 1 * 512 = 512 bytes 
Sector size (logical/physical): 512 bytes / 512 bytes 
I/O size (minimum/optimal): 512 bytes / 512 bytes 
Disklabel type: dos 
Disk identifier: 0x5c6842c1 
 
Device     Boot Start      End  Sectors  Size Id Type 
/dev/sdc1        2048 62517247 62515200 29.8G fd 8e  Linux LVM 

Note that the partition type here is '8e', or “Linux LVM.” 

Creating a Virtual Volume 
We have 2 drives with Linux LVM Partition - sdb1 and sdc1 

Create the LVM PV Group 

Initialize each of the disks using the pvcreate command: 

pvcreate /dev/sdb1 /dev/sdc1 

This sets up all the partitions on these drives for use under LVM, allowing creation of volume 
groups. To examine available PVs, use the pvdisplay command. 

Create the LVM Volume Group 

This system will use a single-volume group named fileserver: 

vgcreate fileserver /dev/sdb1 /dev/sdc1 

Use vgdisplay to see the newly created “fileserver” VG with the two drives stitched together. 

Create the LVM Logical Volumes 

Now create the logical volumes within them: 

lvcreate --name media --size 20G fileserver 
lvcreate --name share --size 20G fileserver 

Use lvdisplay to see the newly created logical volumevg 

Without LVM, you might allocate all available disk space to the partitions you're creating, but with 
LVM, it is worthwhile to be conservative, allocating only part the available space to the current 
requirements. 

As a general rule, it's easier to grow a filesystem than to shrink it, so it's a good strategy to allocate 
exactly what you need today, and leave the remaining space unallocated until your needs become 
clearer. 



This method also gives you the option of creating new volumes when new needs arise (such as a 
separate encrypted file share for sensitive data). 

Now you have several nicely named logical volumes at your disposal: 

/dev/fileserver/media 
/dev/fileserver/share 

Summarizing where we are to this point - again, we have Logical Volumes over a Volume Group 
sitting on a Physical Volume Group spread over two Physical Drive Partitions - see below; 

The Logical Volumes 

test@testbox:~$ sudo lvdisplay 
  --- Logical volume --- 
  LV Path                /dev/fileserver/share 
  LV Name                share 
  VG Name                fileserver 
  LV UUID                xNEcAi-Y4s6-mt9B-6ic6-iIOT-hN4i-gIkNg6 
  LV Write Access        read/write 
  LV Creation host, time testbox, 2016-05-20 22:25:42 -0700 
  LV Status              available 
  # open                 0 
  LV Size                20.00 GiB 
  Current LE             5120 
  Segments               1 
  Allocation             inherit 
  Read ahead sectors     auto 
  - currently set to     256 
  Block device           252:0 
    
  --- Logical volume --- 
  LV Path                /dev/fileserver/media 
  LV Name                media 
  VG Name                fileserver 
  LV UUID                enRNSF-8awM-QQ73-q4mV-7vDu-s6mN-Vj9E3H 
  LV Write Access        read/write 
  LV Creation host, time testbox, 2016-05-20 22:26:08 -0700 
  LV Status              available 
  # open                 0 
  LV Size                20.00 GiB 
  Current LE             5120 
  Segments               2 
  Allocation             inherit 
  Read ahead sectors     auto 
  - currently set to     256 
  Block device           252:1 

The Volume Group 

test@testbox:~$ sudo vgdisplay 
  --- Volume group --- 
  VG Name               fileserver 



  System ID              
  Format                lvm2 
  Metadata Areas        2 
  Metadata Sequence No  5 
  VG Access             read/write 
  VG Status             resizable 
  MAX LV                0 
  Cur LV                2 
  Open LV               0 
  Max PV                0 
  Cur PV                2 
  Act PV                2 
  VG Size               59.62 GiB 
  PE Size               4.00 MiB 
  Total PE              15262 
  Alloc PE / Size       10240 / 40.00 GiB 
  Free  PE / Size       5022 / 19.62 GiB 
  VG UUID               f5Z2w1-PSZi-9K3G-9RTp-1jNx-gj0q-WugTqD 

And the Physical Volume Group 

test@testbox:~$ sudo pvdisplay 
  --- Physical volume --- 
  PV Name               /dev/sdb1 
  VG Name               fileserver 
  PV Size               29.81 GiB / not usable 0    
  Allocatable           yes (but full) 
  PE Size               4.00 MiB 
  Total PE              7631 
  Free PE               0 
  Allocated PE          7631 
  PV UUID               zaNOx1-fS0k-wNQ1-DGpq-yfNg-kc3e-j5toa1 
    
  --- Physical volume --- 
  PV Name               /dev/sdc1 
  VG Name               fileserver 
  PV Size               29.81 GiB / not usable 0    
  Allocatable           yes  
  PE Size               4.00 MiB 
  Total PE              7631 
  Free PE               5022 
  Allocated PE          2609 
  PV UUID               slUCwq-Gw81-FcbB-WF06-tt33-EQ27-9rT737 

Note - here's a hint that we've been quietly building quotas for the shares - not on a user basis, but 
on a share basis - and this keep linux from running off the end of the pier if it runs out of disk space 
- it'll panic a bit, but you won't crash the entire volume set, it'll go read-only if the limits are hit, 
which is a good indication to see what's going on - another reason why LVM is a good thing) 

Selecting Filesystems 
Now that the logical volumes are created, the next step is to put filesystems on them. However, 



there are many types of filesystems. How do you choose? 

• For typical desktop filesystems, you're probably familiar with ext4. 
• ext4's balance of performance, robustness, and recovery speed makes it a fine choice for 

general purpose use. Because ext4 has been the default for such a long time, ext4 is also a 
good choice if you want great reliability. 

• For storing backups, reliability is much more important than speed. 
• The major downside to ext4 is that to grow (or shrink) the filesystem, you must first 

unmount it. 
• However, other filesystems provide advantages in certain situations, such as large file sizes, 

large quantities of files, or on-the-fly filesystem growth. 
• Because LVM's primary use is for scenarios where you need extreme numbers of files, 

extremely large files, and/or the need to resize your filesystems, the following filesystems 
are well worth considering. 

• For large numbers of small files, XFS is an excellent choice, and it was designed specifically 
with LVM in mind. 

• If your system is recording or processing video at the same time, delays may cause dropped 
frames or other glitches. XFS is better choice in this situation 

• XFS has the edge due to greater reliability and better general performance. 

Since we're building this document around Ubuntu, check their site for more information on the 
various file systems available for use - ext4, xfs are native to Ubuntu 16.04 and well proven 

With all these considerations in mind, the intent here is to keep things as simple as possible for the 
moment - again, this is only as an example for the walk-thru 

Format the partitions on the LV's as follows: 

mkfs.ext4 /dev/fileserver/share 
mkfs.xfs /dev/fileserver/media 

NOTE - this is just an example - I typically use xfs on all my LVM volumes - in the advanced section, 
all logical volumes are xfs, and before you start, review that section, and I think you'll agree 

Mounting the Logical Volumes 
Now to create mount points in the primary file system 

sudo mkdir /var/share 
sudo mkdir /var/media 

Now we can test mount the logical volumes 

sudo mount /dev/fileserver/share /var/share 
sudo mount /dev/fileserver/media /var/media 

you can check by doing a df -h and see that the file system has the new volumes and sizes 

/dev/mapper/fileserver-share   20G   44M   19G   1% /var/share 
/dev/mapper/fileserver-media   20G   33M   20G   1% /var/media 

Finally, to persistently mount the file systems, first add the following lines to /etc/fstab: 

/dev/fileserver/share    /var/share      ext4   rw,noatime    0 0 
/dev/fileserver/media    /var/media      xfs   rw,noatime    0 0 



And reboot the system 

Adding Reliability With RAID 
So far, this LVM example has been reasonably straightforward. 

That's right - it's a spanned drive, which is even more worrisome that a RAID0, as the read/write 
performance is limited to the speed of the drive within the span that data is being read 
from/written to, and there is no indication of any issues with the drive. 

So let's convert our spanned drive to a RAID array 

First, any data that is in those logical volumes - back it up, as this is a destructive process; 

Second, if these are shared, stop any processes that might be using them 

Then unmount the volumes 

umount /dev/fileserver/media 
umount /dev/fileserver/share 

Check with df to make sure they're unmounted 

Now we disassemble the sets... going it bit faster this time 

lvremove /dev/fileserver/media 
lvremove /dev/fileserver/share 
vgremove fileserver 
pvremove /dev/sdb1 /dev/sdc1 

And we're back to two devices on the bus - by removing the LV's, we also remove the filesystem 
that overlaid them 

Update the /etc/fstab and comment out the two LVM shares - we will be using the same two 
mounts after we build the array 

Setting up a Software RAID array 

Then, change the partition type on these two drives, using filesystem type fd (Linux raid 
autodetect) - 

Delete the old partitions if needed, and create New Primary partitions - below we're setting up a 
RAID0, but you can change --level switch to 1,5,6,10 depending on number of disks, and you're 
intents.. this is only meant as an example. 

Write the changes, and do an fdisk -l to check 

mdadm --create --verbose /dev/md0 --level=0 --raid-devices=2 /dev/sdb1 /dev/sdc1 

Update the mdadm.conf file 

mdadm --detail --scan >> /etc/mdadm/mdadm.conf 

- http://www.ducea.com/2009/03/08/mdadm-cheat-sheet/ 

And add it back to the LVM 

Moving quickly 

pvcreate /dev/md0 
vgcreate fileserver /dev/md0 
lvcreate --name share --size 20G fileserver 
lvcreate --name media --size 20G fileserver 



and you can verify that we're back to where we were... 

lvdisplay 

Create the filesystem on the logical volumes 

mkfs.xfs /dev/fileserver/media 
mkfs.ext4 /dev/fileserver/media 

Redo the mounts 

mount /dev/fileserver/media /var/media 
mount /dev/fileserver/share /var/share 

check df to see that they're mounted - if good, go back and uncomment the lines for /var/share 
and /var/media in the /etc/fstab 

Reboot, and you're set 

LVM advanced examples 
LVM, like many other enterprise class technologies, brings new flexibility to the linux desktop. 

While the previous walk-thru is small in scope, the real power of LVM is dealing with a large 
volume group, and being able to manage the Physical Volumes, Logical Volumes, and maintain 
your data. 

LVM Growth 

Suppose that over the next year, the storage system fills up and needs to be expanded. Initially, 
you can begin allocating the unallocated space. 

In our previous example, we had a 59GB Volume Group (VG) and only 20GB allocated to 
/var/media - we can grow this out.. 

For instance, to increase the amount of space available for media files from 20GB to 25GB, run a 
command such as: 

umount /dev/fileserver/media 
lvextend -L25G /dev/fileserver/media 
mount /dev/fileserver/media /var/media 
xfs_growfs /dev/fileserver/media 

Note that we're not increasing the size of /var/media, but the actual LVM logical volume that it's 
mounted from the Operating System, so the OS sees it, and uses it. 

Note - there is a -D switch on xfs_growfs, setting the limit in blocks (not bytes), if it is not set, then 
xfs_growfs will expand the filesystem to the limit of the volume. 

WARNING - one should never reduce the size of an LVM Logical Volume, and xfs, while it can 
extend a partition/volume, it cannot shrink - to reduce the size of any partition on any 
filesystem, it's always a backup, and restore to the new volume size 

Growth via MDADM - RAID 

Leveling up - this is pretty complicated, but a structured approach works - takes time, and of 
course, always have a backup of your data... 

WARNING - we're now mucking about deep inside the LVM stack - things might go wrong, may 
go wrong - so always, I repeat, always have a backup before doing operations like this 



Let's say we have an LVM Logical Volume Group running on top of a RAID 

As an example - we have 4 1TB drives running, and we want to swap them out for 4 4TB drives - we 
can do this. But it will take a bit of time to migrate and grow, as we do one disk at a time, and let 
MDADM sync the drives before going to the next disk in the arrary 

Note - as a RAID5, 4*1TB = 3TB as we lose the 1TB for parity 

Here's the lineup for the example - /dev/md0 is a member of the fileserver volume group (VG) 

The RAID5 device is /dev/md0 
 
The members of /dev/md0 
 
/dev/sdb1  
/dev/sdc1  
/dev/sdd1  
/dev/sde1 

We first unmount the logical volumes across the entire LVM set. 

umount /dev/fileserver/share 
umount /dev/fileserver/media 

With RAID5, the migration is straightforward, as we use RAID5's ability to run in degraded mode if 
we have a failed drive 

Use mdadm to mark one single drive of the RAID5 mirrors as failed, and then remove it: 

mdadm --manage /dev/md0 --fail /dev/sda1 
mdadm --manage /dev/md0 --remove /dev/sda1 

Pull out the sda hard drive and replace it with the new 4TB drive. 

Go into fdisk, and partition the drive (see above) making sure to split the physical drive into two 
partitions, sda1 as the same size as the old 1TB sda1, and add new sda2 partion, which we add the 
remaining balance of sda to sda2 (approx 2.8TB) 

Now we manage sda1 back to /dev/md0 - remember, that we marked sda1 as failed 

mdadm --manage /dev/md0 --add /dev/sda1 

MDADM will then add /sda1 back to the array and start rebuilding the RAID5 set - once it's done, 
do the same with /sdb1 and so forth... 

In the end of all this, we have 8 sets of partitions the sd<d,c,d,e>1 set, and the remainders - so we 
take the second set of partitions, and build that into a new /dev/md1 device 

mdadm --create --verbose /dev/md1 --level=5 --raid-devices=4 /dev/sdb2 /dev/sdc2 /dev/sdd2 
/dev/sde2 

So now we have a second MD RAID5 set - and this one is 12TB (remember that md0 is already 4TB 
recreated from the previous 4 1TB drives) 

Let md1 finish it's sync up - can check mdstat to see the progress - when it's done... 

we add them to the Physical Volume group (pv) 

pvcreate /dev/md1 

and extend the volume group 



vgextend fileserver /dev/md1 

Now the fileserver Volume Group has 12TB of storage compared to the previous 3TB of storage, 
and we can use LV to grow the file systems... 

The previous allocations were 750GB for /share and 2TB for media, and now we want to put 3TB 
for /share, and 7TB /media (remember, we don't allocate the entire VG space to keep a bit in 
reserve) 

lvextend -L7T /dev/fileserver/media 
lvextend -L3T /dev/fileserver/share 

And now we have 10TB of space - and we can grow the file systems according - and this is why xfs 
is much better than ext4 

Mount the file systems again - as they were unmounted before we started swapping out disks... 

mount /dev/fileserver/media /var/media 
mount /dev/fileserver/share /var/share 

Now we tell xfs to grow... but the filesystem must be mounted before we do this... 

xfs_growfs /dev/fileserver/media 
xfx_growfs /dev/fileserver/share 

And xfs will grow the filesystem to the extent of the volume. 

What I'm getting at is that with LVM, we can definitely swizzle things around with Physical Volume, 
and Logical Volume all within the same Volume Group set - it's a very powerful solution, and one 
that enterprises use all the time. 

Always do your homework, have a plan, and do some research - this is Linux after all, and changes 
happen and API's evolve - and always have a backup plan. 


